We are going to appeal to the so-called Zeckendort theorem:

Theorem

Every positive integer can be uniquely expressed as the sum of nonconsecutive
Fibonacei numbers.

The idea is to take the following so-called Wythoff array:
e 1.2 35 ...
e 1+3,24+5 3+8,...
o 145 248 3+13,...
e 1+8, 24+13, 3421, ...
e 1+34+8,2454+13,34+84121,...
L

We write the details below.
Let {F;} denote the Fibonacel numbers with F} = 1, F» = 2. Say n =ag - -- a1py, with
a; = 1 is a Fibonaccl base representation of n if a; is 0 or 1,

k
n= E a; F;
i=1

and a;, a;,; are not both 1 for any i. Equivalently, it is a representation of n as a sum of
nonconsecutive Fibonacel numbers.

We begin by outlining a proof of Zeckendorf’s theorem, which implies the representation
above is unique. Note that if Fi. is the greatest Fibonacel number at most n, then

n—Fp < Fryp) — Fi = Fi_.

In particular, repeatedly subtracting off the largest Fi from n will produce one such
representation with no two consecutive Fibonacel numbers. On the other hand, this Fj
must be used, as

n>2F,>Fr 1+ Fe 3+ Fp5---

This shows, by a simple inductive argument, that such a representation exists and unique.
Now for each @ - a1 p, with a; = 1, consider the sequence

Qy - - - Q1Fib, A - - - 01 0pip, ag - - - a1 00p;p, . .

These sequences are Fibonacei-type by definition, and partition the positive integers
since each positive integer has exactly one Fibonacel base representation.



Let O be the center of w, and let M = PQN AB and N = PQ N AC be the midpoints
of AB and AC respectively. Refer to the diagram below.

The main idea is to prove two key claims involving O, which imply the result:

(i) quadrilaterals AOE; Fy and AOEyF; are cyclic (giving the radical axis is AO),
(ii) AOE1F1 =2 AOEyF; (giving the congruence of the circles).

We first note that (i) and (ii) are equivalent. Indeed, because OP = OQ), (ii) is equivalent
to just the similarity AOE1F; ~ AOFE3F,, and then by the spiral similarity lemma (or
even just angle chasing) we have (i) < (ii).

We now present five proofs, two of (i) and three of (ii). Thus, we are essentially
presenting five different solutions.

Proof of (i) by angle chasing Note that
AFoF0 = LQFEy0 = LOQNO = LMNO = AMAQO = £F>, AO

and hence EoOAF} is cyclie. Similarly, E1OAF; is cyclic.

Proof of (i) by Simson lines Sinee P, M, N are collinear, we see that PM N is the
Simson line of O with respect to AAFEFy.

Proof of (ii) by butterfly theorem By BUTTERFLY THEOREM on the three chords AC),
PQ, PQ, it follows that BN = NF,. Thus

E\P =\/E1A-E|C =\/FEyA - EyC = E,yP.

But also OP = OQ and hence AOPE; 2 AOQFE,. Similarly for the other pair.



Proof of (ii) by projective geometry Let T = PP N QQ. Let S be on PQ with
ST | AC; then TS L ON, and it follows ST is the polar of N (it passes through T by
La Hire).
Now,
—1=(PQ;NT) L (E1Ey; Noo)

with oo = AC N ST the point at infinity. Hence By N = NE5 and we can proceed as in
the previous solution.

Proof of (ii) by complex numbers We will give using complex numbers on AABC a

proof that |E1P| = |E2Q)|.
We place APBCQ on the unit circle. Since PQ || BC, we have pg = be. Also, the
midpoint of AB lies on PQ, so

a-+b a+b
pt+q= ‘f’( : )-pq

2 2
a+b a4+b
2 * 2ab
ala+b) cla+b)
2a + 2a
_(a+b)(a+e)
N 2a

-be
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Let py,pa, pa, - - -, be the sequence of primes.

Given k > 0, consider a square matrix with order k whose entries in the first row consists of first k primes,
those in the the second row consists of the next k primes, and so on. Let m; be the product of the primes in
the n*® row and let M; be the product of the primes in the i*" column. Then, the numbers m; are relatively
prime in pairs, as are the M;.

Next, consider the set of congruences.

=-1 modmy
= -2 mod ms
= —k mod my

This system has a solution a which is unique mod myma - - - my.
Similarly, the system

y=-—1 mod M,
= -2 mod M;

r=—k mod M

has a solution b which is unique mod M, --- My = my --- my.

Now consider the square with the opposite vertices (a,b) and (a + k, b+ k). Any lattice point inside this
square has the form (a + r,b+ s), where 0 < r < k,0 < s < k, and those with »r = k or s = k lie on the
boundary of the square. Now, we show that no such point is visible from the origin.

In fact, a = —r (mod m,) and b = —s (mod M,). So, the prime in the intersection of row r and column s
divides both @ + r and b + s. Hence, a + r and b + s are not are not relatively prime and hence the lattice
point (a + k, b+ k) is not visible from the origin.



First solution: We will prove that the maximum value of n is 11. Figure 105
describes an arrangement of 12 dominoes such that no additional domino can be placed
on the board. Therefore. n = 11.

Figure 105

Let us show that for any arrangement of 11 dominoes on the board one can add one
more domino. Arguing by contradiction, let us assume that there is a way of placing 11
dominoes on the board so that no more dominoes can be added. In this case there are
36 — 22 = 14 squares not covered by dominoes.

Denote by & the upper 5 x 6 subboard, by 5> the lower 1 x 6 subboard, and by 53
the lower 5 » 6 subboard of the given chessboard as shown in Figure 106.

Because we cannot place another domino on the board, at least one of any two
neighboring squares is covered by a domino. Hence there are at least three squares in 52
that are covered by dominoes, and so in §; there are at most three uncovered squares. If
A denotes the set of uncovered squares in Sy, then [A] = 14 — 3 = 11.

L

Figure 106

Letus also denote by B the set of dominoes that lie completely in S3. We will construct
a one-to-one map f : A — B. First, note that directly below each square s in §; there
is a square t of the chessboard (see Figure 107). If 5 is in A, then ¢ must be covered
by a domino d in B, since otherwise we could place a domino over s and f. We define



f(s) =d. If f were not one-to-one, that 1s, if f(s;) = f(s2) = d, for some sy, 52 € A,
then d would cover squares directly below s, and s as described in Figure 107. Then s,
and s, must be neighbors, so a new domino can be placed to cover them. We conclude
that f is one-to-one, and hence |A| < |B|. It follows that [B| = 11. But there are only
11 dominoes, so |B| = 11. This means that all 11 dominoes lie completely in S5 and
the top row 1s not covered by any dominoes! We could then put three more dominoes
there, contradicting our assumption on the maximality of the arrangement. Hence the
assumption was wrong: one can always add a domino to an arrangement of 11 dominoes.
The answer to the problem is therefore n = 11.

, O

Figure 107
Second solution: Suppose we have an example with k& dominoes to which no more can
be added. Let X be the number of pairs of an uncovered square and a domino that covers
an adjacent square. Let m = 36 — 2k be the number of uncovered squares, let m; be the
number of uncovered squares that touch the boundary (including corner squares). and
m, the number of uncovered corner squares. Since any neighbor of an uncovered square
must be covered by some domino, we have X = 4m — my — m.. Similarly, let k; be the
number of dominoes that touch the boundary and k. the number of dominoes that contain
a corner square. A domino in the center of the board can have at most four unoccupied
neighbors, for otherwise, we could place a new domino adjacent to it. Similarly, a
domino that touches the boundary can have at most three unoccupied neighbors, and a
domino that contains a corner square can have at most two unoccupied neighbors. Hence

X < 4k — ky — kc. Also, note that k; > mj, since as we go around the boundary we
can never encounter two unoccupied squares in a row, and m, + k. < 4, since there are
only four corners. Thus 4m —my —m. = X < 4k — ky — k. gives 4m — 4 < 4k: hence
35 — 2k < k and 3k > 35. Thus k must be at least 12. This argument also shows that on
an n x n board, 3k* > n* — 1.



Letus make the convention that the letter p always denotes a prime number. Consider
the set A(n) consisting of those positive integers that can be factored into primes that do
not exceed n. Then

1 1 1
[ (1 +—+—+- ) Yo —.
p=n p p meA(n) n

. which is known to exceed Inn. Thus, after summing the

1\ !
l_[(l——) > Inn.

p=n P

This sum includes )", -
geometric series, we obtain

For the factors of the product we use the estimate

2 1
> (11— for0<t < 3
To prove this estimate, rewrite it as f(7) > 1, where f(r) = (1 — r)eH’Q. Because
() =1t(l — 2r)e‘+‘2 > 0 on [0, %]. f isincreasing: thus f(r) = f(0) = 1.
Returning to the problem, we have

[\ !
Hex (p pz)zn(l—;) = Inn.

p=n p=n
Therefore,
Z Z —2 = Inlnn.
P
p<n p=n
But
1 > 72
I M
p= n=2
Hence

]
Z— >Inlnn — 1,

p=n p

as desired.






